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The concept of  super sextet is clarified and the generalized sextet polynomial 
in two elements is proposed.  Two theorems related to Ohkami -Hosoya  conjec- 
ture [1] are proved and one novel conjecture is proposed. 
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1. Introduction 

In [2], Ohkami et al. showed the one-to-one correspondence between Kekul~ 
and proper sextet patterns of  thin polyhex graphs having at least one Kekul~ 
structure through the "Clar  t ransformation" [3]. But so far, for the general polyhex 
graphs having at least one Kekul~ structure, the one-to-one correspondence 
problem has not been resolved. In 1983, Ohkami and Hosoya proposed a conjec- 
ture [1]: for any polyhex graph having at least one Kekul6 structure, there exists 
one-to-one correspondence between Kekul~ and proper  sextet patterns. Because 
they have not given the explicit definition of super sextet, the meaning of the 
one-to-one correspondence was not sufficiently clarified. In this paper,  we give 
the definitions of  generalized sextet and generalized super sextet, propose a 
generalized sextet polynomial  in two elements, and prove two theorems related 
to Ohkami -Hosoya  conjecture. In addition, we propose a new conjecture. 

Although we haven' t  given the final p roof  of  Ohkami -Hosoya  conjecture, this 
paper  will make the meaning of  the conjecture to be more clarified. In fact, we 
have proposed a possible way to prove Ohkami-Hosoya  conjecture. And we 
believe that the conjecture will be proved in near future. 
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2. Some topological properties of polyhex graphs 

Like [ 1 ], in this paper only the polycyclic benzenoid hydrocarbons are concerned. 
The carbon atom skeletons of these molecules are expressed by polyhex graphs. 
Furthermore the discussions are limited to those polyhex graphs having at least 
one Kekul6 structure (or Kekul6 pattern). Obviously, the number of vertices of 
the graphs must be even. 

Denote a polyhex graph by G(V, E), where V represents the set of vertices and 
E the set of edges. I vl and IE[ represent the number of vertices and the number 
of edges in G, respectively. Obviously, all the vertices are of either degree two 
or degree three. Denote the number of vertices of degree two by g2, and that of 
vertices of degree three by g3. In addition, denote the number of the interior 
vertices of degree three in G (i.e. the common vertices of three connected hexagons 
in G) by T3. The interior of a coronafusene polyhex graph [4] isn't filled by 
hexagons. Denote the number of the "holes" (not hexagons) in G by k (see Fig. 1). 

Some topological properties of polyhex graphs can be easily obtained [5]. 

IVl=g2+g3, (1) 

g2 = 2n + 4 -  T3 -4k ,  (2) 

and 

g3 = 2(n - 1) +2k, (3) 

where n is the number of hexagons (benzenoid rings) in G. By substituting (2) 
and (3) into (1), it is easy to obtain 

Ivl=an+ 2- T3-2k. (4) 

Besides, 

IEI = �89 + 2g=). (5) 

h: l  

Fig. 1. Holes (not hexagon) 

h-2 
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By substituting (2) and (3) into (5), 

IE]= 5n+ l -  T3-k. (6) 

A Kekul6 pattern of a polyhex graph is one, in which all the component points 
belong to one and only one double bond spanning a pair of adjacent points, or 
in graph-theoretical terms that such a pattern is a perfect matching (or maximum 
matching, i.e. a decomposition into 1-factors) of the polyhex graph G [6, 7]. For 
a perfect matching, the used edge set (double bond) is Ep and the unused edge 
set (single bond) is E~. Obviously, [5] 

EeuE~=E,  

Ep n E~ = & (the vacant set), 

levi- Ivl 
2 '  

(7) 

(8) 

(9) 

and 

IE=I=IEI-IE I. 
Substituting (4), (6) and (9) into (10), we have 

(10) 

IE l=3n -T3. (11) 
2 

3. Generalized sextet polynomial in two elements 

The necessary definitions are as follows. 

Inner polygon in G 

It is a polygon in G, and within this polygon there are no more other polygons. 
Obviously, all the hexagons in G are inner polygons whose vertex number is six. 
All the interior "holes" (not hexagons) in coronafusene polyhex graphs are also 
inner polygons whose number in G is k (see Fig. 1). The number of vertices of 
an inner polygon must be even. 

Generalized right sextet and generalized left sextet 

Consider an inner polygon P whose vertex number is d. If  in a given Kekul6 
pattern of G, a set of d/2 conjugated double bonds are arranged on P, then P 
is called a generalized sextet in G. And if the vertical edge on the extreme right 
in P is a double bond, then the generalized sextet is called a generalized right 
sextet, otherwise a generalized left sextet (Fig. 2). In fact, the definitions of 
generalized right and generalized left sextet are the extension of the definitions 
of the proper and improper sextet in [1], respectively. 
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Left Right 

Fig. 2. Generalized right and generalized left sextet 

Generalized super sextet 

Consider a .polygon P '  in G. I f  in P '  all generalized sextets (and/or  generalized 
super sextets, as seen later on) and all the fixed bonds [1] connected to them 
were deleted, the polygon P '  could be exposed as a "h01e". And if a set of  d ' /2  
conjugated double bonds are arranged on the circumference of  P' whose vertex 
number  is d ' ,  then P '  is called a generalized super sextet. 

I f  the vertical edge on the extreme right of  a generalized super sextet is a double 
bond, then the generalized super sextet is called a generalized right super sextet, 
otherwise a generalized left super sextet. In Fig. 3a there are two generalized 
right super sextets and in Fig. 3b there is one generalized left super sextet. 

I f  in a Kekul6 pattern of  a coronafusene polyhex graph G there are some "holes" 
(not hexgons) to be "generalized sextets," or alternatively, they can be referred 
to as generalized super sextets. 

From now on, the term "generalized sextet" includes "generalized super sextet" 
unless otherwise stated. 

Generalized sextet pattern 

A generalized sextet pattern of  G is a pattern derived from a Kekul6 pattern of  
G in which all generalized sextets are unchanged, but the remaining double 
bonds are all t ransformed into single bonds (Fig. 4). 

r t  

Fig. 3. Generalized super sextet 

b 
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Kekule pattern General ized 

sextet pattern 

Fig. 4. Kekul~ pattern and generalized sextet pattern 

Resonant generalized sextet number, h( G, i,j) 

So called resonant generalized sextet number is the number of ways in which i 
generalized right sextets and j generalized left sextets can be chosen from G. 

Generalized sextet polynomial in two elements 

m a x  m a x  

z,j)xy s, (12) HG(x,y)= ~. Y~ h(G," " ' 
i = 0  j = 0  

where x and y are simply parameters to hold i and j, respectively, h(G, i,j) can 
be realized that in all Kekul6 patterns of  G there are h(G, i,j) and only h(G, i,j) 
patterns in which there exist i generalized fight sextets and j generalized left 
sextets. 

In fact, He(x, 1) is equal to the proper sextet polymial Be(x) in [1], i.e. 

m a x  

HG(x, 1) = Be(x) = ~ r(G, k)x k, (13) 
k=O 

where r(G, k) is the number of ways in which k proper sextets can be chosen 
from G, and r(G, 0)=  1. (See [1]). Besides, define 

He(x, y) = 0, for a vacant graph r (14) 

Specifically, 

H e ( l ,  1) = ]det 311/2 = Idet B[ = K(G),  (15) 

where A is the symmetrical adjacency matrix of G, but B is the non-symmetrical 
matrix in the form expressed by Ham [8], having vertices of the starred set as 
row headings, and vertices of the non-starred set as columns headings; entries 
in both matrices are 1 for adjacent vertices and O for non-adjacent vertices. 
Equation (15) means that the counting up of all the generalized sextet patterns 
of G is equivalent to the enumeration of  the number of Kekul6 patterns of G. 
As an example of  generalized sextet polynomial H~(i,j), see Fig. 5. 

For the reflection or rotation transformation of G [9], in the generalized sextet 
polynomial (12) only the interchange of x and y is required. In a similar way to 
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xy 
Fig. 5. Terms of a generalized sextet poly- 
nomial 

that in [1], we can write the recurrence relations of generalized sextet patterns 
in two elements. For example, for the polyacene series (Fig. 6), 

Ho,(x, y) = x + y + (n - 1)xy. (16) 

In this paper we will not give the recurrence relations of  other specific polyhex 
series. 

4. One-to-one correspondence between Kekul~ and generalized sextet patterns 

To obtain the one-to-one correspondence between Kekul6 and generalized sextet 
patterns, the key is to prove the following theorem. 

Theorem 1. For any polyhex graph G, if  G( V, E)  has at least one Kekul~ pattern, 
then 

h(G, 0, 0) = 0. (17) 

Proof. Suppose in the case of  i = 0 and j = 0, h(G, 0, 0) ~ 0, then there would be 
at least one perfect matching of G so that in every hexagon of G at most two 
edges belong to the used edge set Ep (double bond), whereas at least four edges 
belong to the unused edge set Es (single bond). Thus 

]Es]>-4n-IQI, (18) 

where n is the number of  hexagons in G, and IQ[ is the number of  common 
single bond edges of two adjacent hexagons. Obviously, Q c_ Es. 

Fig. 6. Polyacene 
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As stated above, the common vertices of  three adjacent hexagons are the interior 
vertices of  degree three, of  which the number  is denoted by T3. 

Now we call the common vertices of  two adjacent hexagons the circumferential 
vertices (including the circumferential vertices of  coronafusene "holes")  of  degree 
three. Its number  is g 3 -  T3. 

Because all the vertices in a Kekul6 pattern have been saturated by the matching, 
of  three edges terminating on any vertex of  degree three two edges belong to Es 
and one belongs to E v. For an interior vertex of degree three, the two single bond 
edges (belonging to Es) terminating on it must belong to Q, whereas for a 
circumferential vertex of degree three at most one single bond edge terminating 
on it belongs to Q. I f  in g3 - -  T3 circumferential vertices of  degree three there are 
m vertices on which neither of  two single bond edges terminating belongs to Q, 
then we have 

10l = &(2 T3 + (g3 - T3 - m)) = ~(g3 + T3 - m). (19) 

By substituting (19) into (18), 

I sl-----4n - �89 + T3 - m). (20) 

By substituting (3) into (20), 

By substituting (11) into (21), 

m 
1 - k + - - -  0. ( 2 2 )  

2 

When k = 0 (i.e. in the case of  non-coronafusenes) (22) contradicts itself. And 
so h(G, 0, 0) = 0 holds. 

When k = 1, (22) requires m = 0, then the circumferences of  coronafusene "hole"  
forms a generalized sextet. And it is contrary to i = 0 a n d j  = 0. Hence h (G, 0, 0) = 0 
still holds. 

For a general value of k, f rom (22) 

2(k - 1) -> m. (23) 

As stated above, in the circumferential vertices of  degree three there are m vertices 
connected to their adjacent vertices of  degree three by double bond edges. 

Let us consider a circumference of  a coronafusene "hole".  I f  on it we find a 
vertex of degree three connected to its adjacent vertex of  degree three by double 
bond edge, on the same circumference of  "hole"  we can certainly find two or 
more vertices of  degree three connected to their adjacent vertices of  degree three 
by double bond edges. 

The reason is very simple. In fact, the number  of  vertices of  the "hole"  circumfer- 
ence must be even. I f  it loses one vertex, it is impossible to do its decomposit ion 
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into 1-factors [6, 7]. In this case the circumference of "hole"  is not a generalized 
sextet. Hence as long as a circumference of  "hole"  is not a generalized sextet, 
on this circumference there must be at least two vertices of degree three which 
belong to the m's. 

By considering (23), it follows that at most k -  1 holes (not hexagons) in G are 
not generalized sextets. In other words, at least one hole (not hexagon) in G is 
a generalized sextet. It is also contrary to the conditions i = 0 and j = 0. Hence 
h(G, 0 , 0 ) = 0  still holds. Q.E.D 

Now we can prove the following one-to-one correspondence theorem. 

Theorem 2. For any polyhex G there exists one-to-one correspondence between 
Kekuld and generalized sextet patterns. 

Proof. According ~ to the definition of generalized sextet patterns, any perfect 
matching of polyhex graph G (i.e. a Kekul6 pattern of G) corresponds to a 
generalized sextet pattern in which there are i generalized right sextets and j 
generalized left sextets (i -> 0, j - 0 and i + j  ~ 0). 

Inversely, if a generalized sextet pattern with i generalized right sextets and j 
generalized left sextets is given ( i+j  ~ 0), we can prove that it corresponds to 
one and only one Kekul6 pattern of G. 

Let us wipe out all the i + j  generalized sextets and the fixed bond edges connected 
to them. A connected subgraph G1 of the remainder would be a generalized 
sextet pattern which should not have any generalized sextet. But according to 
Theorem 1, h(G1, 0, 0 )=  0, in G1 there would be at least one generalized sextet. 
The contradition indicates that the remainder does not exist, and Theorem 2 has 
been proved. 

In addition to the above theorems, we propose the following conjecture. Although 
no rigorous proof can be reached at present time, its validity has been checked 
by a number of examples. 

Coniecture. For any polyhex graph G, 

m a x  m a x  

h(G, i, O) = ~ h(G, O,j) - 1. (24) 
i = 1  j = l  

If  this conjecture can be proved, then the rigorous proof  of Ohkami-Hosoya 
conjecture will be derived easily. 

5. Discussion 

Unlike [ 1 ], in this paper so called generalized sextets include proper and improper 
sextets. From the graph-theoretical standpoint, the distinction between proper 
and improper sextet is caused by the orientations of graph. In fact, proper and 
improper sextet can be mutually transformed by rotation or reflection of the 
graph [9]. In other words, they have not any material distinction. And their 
physical and chemical properties should be all the same to each other. And so 
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it should be more advantageous  that m a n y  zr-electronic properties of  isomeric 
benzeno id  hydrocarbons  are expla ined by the general ized sextet po lynomia l  in 

two elements.  
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